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Reflective Optics System for Uniform Spherical lllumination

C. R. Phipps, Jr., S. E. Bodner, and J. W. Shearer

A reflective optical system 1s described that permits nearly uniform illumination of a small sphere with one
or two laser beams. The primary application of this device i1s to studies of laser-driven implosion of small
targets. Other applications include the production of plasma by optical breakdown of gases for spectro-
scopic studies and for optimum light collection in intensity-limited plasma diagnostics. Simple calcula-
tions show that the intensity mapping properties of this system are not excessively sensitive to variations
in the radial intensity distribution nor to departures from diffraction-limited propagation in the mput
heams. Optical damage and the illuminated solid angle required at the focus determine the size of the de-

vice.

Introduction

Experimental programs are underway at several
laboratories with the intent of initiating deuterium-—
tritium thermonuclear reactions in small pellets by
means of a laser-driven implosion. An important
prerequisite for achieving the required density and
temperature is the ability to illuminate the fuel pellet
from 47 sr with substantial synchronism and unifor-
mity.

Published estimates of the necessary illumination
uniformity range from 10% to 20%!* depending on
the models employed for thermal conduction, mag-
netic field diffusion, etc. Laser systems now being
built for fusion experiments are designed to achieve
the required optical energy in several beams.

Individual optics designed to focus several heams
onto a spherical target are not simple, even when as
many as twenty beams are involved. Also, talloring
of the overlap among beams must be done on a scale

of tens of microns. Such tailoring would be easier 1f

it could be accomplished prior to focusing, at the en-
trance pupil of a single optical system for pellet 1llu-
mination.

Such an optical system should be reflective, for
reasons of optical damage resistance, freedom from
nonlinear refractive eftects, and wavelength-invar-
1ance of focal properties.

In this paper, two designs are described for optical
systems that satisfy the requirements outlined above.
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It 1s not the purpose of this paper to assess the prob-
lems mvolved in fabricating these systems. How-

ever, two optical fabricators have been contacted who
claim that they can make such systems with adequate

optical quality, and one of them has done so.

One-Beam lllumination System

Figure 1 1llustrates a conceptual system that has
the desired intensity mapping properties for a single
laser beam possessing rotational symmetry about the

propagation axis.

An elliptical mirror of eccentricity e and semima-
jor axis a has the target pellet at one focus F;. A
convex parabolic mirror with semilatus rectum p
shares the major axis and conjugate focus F'5 of the
elliptic mirror. A cylindrically symmetric, collimat-
ed input beam has radial intensity profile [, (p) and
shares the elliptic mirror major axis. Incident radia-
tion 1s first reflected by the parabolic mirror, with a
virtual focus at F'», and then by the elliptic mirror,
generating a real focus at F';.

This system can provide 4= 1llumination at £, ex-

cept In two shadow cones caused by deletion of the
elliptic mirror surface at the primary mirror and en-
trance aperture locations. The degree of uniformity
achieved In the intensity distribution at F; depends
on the form of the input distribution [ (p) and waist
size w, as well as the parameters p and p,,.x. The
focus-and-directrix properties of the conic sections
employed guarantee synchronism at /', if the input
beam is properly aligned. The output distribution
[:(1,0) is derived on a unit sphere centered at F'|, for
convenience in scaling the solution to a specific target
radius. We will derive the mapping function

p,0) = [,(1,0)/I,(p) (1)
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for this specific geometry. The calculation 1s done In
the geometric optics limit and involves only the con-
verging wavefront intensity. These approximations
are valid for target radii much smaller than the input
beam waist and appreciably larger than the incident
licht wavelength Ay. The error involved 1s less than
1% for diffraction-limited input beams 1f the target
radius lies In the range 0.07w 2 rpr 2 2)\g. Ditfrac-
tion effects are treated later in more detail.

Referring again to Fig. 1, the parabolic mirror sur-
face 1s given by

R(d) = p sec(d/2) (2)
and that of the elliptic mirror by
¥y (9)

From the properties of an ellipse,

i (0) + ald) = 2a. (4)

The angles ¢ and # are uniquely related for 0 <, ¢ <
7 by

cosd = |2¢ — (1 + ) cost|/[(1 + ¢°) — 2¢ cos] (5)

> sind = (1 — ¢°) sing/[(1 + ¢°) — 2¢ cosvl. (6)

Differentiation of Eq. (6) shows that

dod/dé = —(sind/sind) = —|»

1 (0 )/’“’:3 (d))J ("7)
from which

rold)dd =

Also, 1t 1s easily shown that

R(bY O = dp. (9)

Equations (8) and (9) are a consequence of the physi-

Shadow fraction

= a(l — ¢2)/(1 — ¢ cosh). (3)

-~y (0)db. (8)

cal fact that the cross section of a differential pencil
of rays 1s unchanged by reflection at a continuous
surface. In the devices considered in this paper, the
optic surfaces are conic sections arranged so as to

cuarantee that all wavefronts are spheres in the geo-

metric optics limit. Therefore, the inverse-square
law*# applies, and the desired mapping function onto
the unit sphere for the present system is given by

— (Ryry/1)° (10)

(p,0)

or

f(p,0) = pl(1 = )/ + e) esct (9/2). (11)

The inverse mapping function will also be required.
This function i1s given by

;{(p, {b) — fb(ﬁ)/f-;(l, 0) = (IJ’E/RJ"T)E. (12)
In terms of the parameters ¢ and p, this is
g(p, &) = Li(p)/I{(1,0) = (1//-32)“{(1 - )/[(1 4 )
- 2¢ cosd|f cost(dh/2).

In cylindrical coordinates, since (p/2p) = tan (p/2),

o(p/p) = A/pHQA - e)/A + /i = )/ + o)
+ (p/2p)Y}*. (13)

In particular, 1t

1

¢ >

2 (13a)

,g(p/p) — 4/p*1 + (p/p) L.
This specialization is useful because attention will
later be focused on situations where ¢ = 1/3.
Equations (12) and (11) permit plotting [, (1,0)
siven an I, (p). Equation (13) is the input distribu-

tion that gives unit intensity for the converging wave-
front at all points on the unit sphere at F'; outside

the shadow cones.

A2
a= 4

=(1-e) l1+e)2+(1-e)?]

Fig. 1.
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The intersection radius of the two mirror surfaces
1S
Paax = 2{ap(l = )11 = | p/a(l + o))"
=~ 2lap( — )3 (14)

Setting the radius of the input pupil equal to p,.x,
these cones have approximate total sohid angle frac-
tion given by

g = AQ/4r ~ (1 — )| + ) + (1 = )=|{(p/a). (15)

For example, in Fig. 1 wheree = 1/3, g = 2.3%.

The beam waist w defined as the 1/¢% intensity ra-
dius of the input distribution given by Eq. (13) is

o= (p),2 = 21 — )/ + e — DV, (186)

Since p < a, w < pmax- Figure 2 is a plot of f(p,0)
for e = 1/3. Figure 3 is a plot of the output and
input intensity distributions for the following func-
tional forms for I;, and e = 1/3:

(1) T'he input distribution given by Eq. (13).

(2) A (Gaussian input distribution with beam waist
civen by Eq. (16).

(3) A Gaussian input with beam waist chosen to
glve unit intensity in 77 (1,0) at 90 and 180 degrees.

From Fig. 3, it can be seen that the output intensi-
ty distribution 7,(1,0) is critically sensitive to the
iInput beam shape in the forward hemisphere, 0° < 4
< 90°, but reasonably 1nsensitive in the backward
hemisphere.

The simple system that has been used for prelimi-
nary discussions has the added disadvantage of 1im-
practical size. 'The parameter p i1s determined by
damage considerations, while the ratio a/p 1s deter-
mined by the allowable shadow fraction on the target
determined by Eq. (15). For example, a 50-J, ¢ =
1/3 one-beam system with 2% shadow fraction yields
the following design parameters: w = 2.8 cm, p =
2.2 cm,a = 205 ¢cm, assuming a 2JJ /em? mirror flux.

Both these disadvantages are largely alleviated by
simply folding the one-beam mirror system, as shown
in IF1g. 4. Now the eccentricity of the elliptical mir-
ror 1s fixed at ¢ = 1/3. In this way, each elliptical
mirror section shares one focus, while the two conju-
gate foc1 of each section occur at the surface of the
opposite section and are congruent with the virtual
foct of two much smaller primaries. This is a more
practical system and will be described below.

Fig. 3. Output and input intensity distributions.
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Practical Two-beam lllumination Systems

Figures 4 and 5 illustrate two interesting variations
of a practical two-beam illumination system. In Fig.
4, synchronous collimated input beams and tilted
parabolic primaries are used, while in Fig. 5 the input
beams are gently focused on hyperbolic primaries to
eliminate that half of the shadowing due to entrance
apertures. Otherwise, both schemes have the fol-
lowing advantages in common relative to the single-
beam optic:

(1) Only the backward hemisphere (180° = 0 =
90°) distribution is used from each input beam.
This greatly reduces sensitivity to input beam shape.

(2) The design involves smaller secondary to pri-
mary dimension ratios and thus a smaller overall de-
vice for a given shadow fraction.

For hyperbolic primaries, Egs. (11), (13), (13a),
and (16) remain valid for an input lens with focal

Shadow fraction
9 (p)\?
EH

Fig. 5.

Il
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Fig. 4. Two-beam system with tilted parabolic primaries.

length equal to the primary optic image distance f,
given by

f=all + e) — 2p. (17)

This equivalence is demonstrated in the Appendix.
The eccentricity of the hyperbolic primaries 1s not
a free parameter, but is required to be

e, = [(f + p)/(f = p)l. (18)
The corresponding input f/number is given by
F, = f/2p. (19)
The intersection radius of the two mirror surfaces 1s
Prax = Ple, + 1) — 2p as e, — 1. (20)

In this case, w/pmax = 0.66. The shadow fraction is
then reduced to

1

Two-beam illumination system with on-axis hyperbolic primaries.




q = 9(p/a)* for parabolic primaries (21a)

and

¢ = (9/2)(p/a)* for hyperbolic primaries. (21b)

This last fact is the only special advantage of hyper-
bolics. Either system has a distinct advantage 1n size
relative to the one-beam system due to the quadratic
dependence of ¢ on (p/a). For example, a 50-J mir-
ror system with 2% shadow fraction and 2 J/cm~ flux
limit gives w = 2.8 cm, p = 2.2 ¢m, and a = 47 cm,
with parabolic primaries or ¢ = 33 cm with hyperbol-
ics. In the case of the parabolic primary, the re-
quired offset angle a ~ (9/4)(p/a) is about 6°, and
the intensity distributions become f(p,0 £ «). The
F4 of L, and Lo in the system shown 1In Fig. 5
would be 12.5.

In a practical illumination system intended for fu-
sion research, some provision must be made for diag-
nostic equipment apertures. If normal incidence on
a spherical target is desired, a compromise must be
made between illumination coverage and the diag-
nostic solid angle required. We note, however, that
much of the diagnostic solid angle in present laser tu-
sion experimental designs is devoted to optical diag-
nostics, and that the access needed for this purpose 1s
provided at the entrance pupil of the system de-
scribed here. X-ray, charged-particle, and neutron
detectors, for example, would require some deletion
of secondary reflector area. However, illumination
systems using multiple discrete optics face this prob-
lem as well.

If complete target coverage is required, but pre-
cisely normal illumination is not, judicious defocus-
ing is a workable solution for either single or multiple
optic illumination devices.

Incidence Angles

In designing practical two-beam illumination sys-
tems, it is often useful to compute the ray incidence
angles at the primary and secondary reflective sur-
faces. This is particularly true if multilayer dielec-
tric coatings are to be employed.

In the geometric optics limit, the incidence angle at
a spherical target surface is always zero. The angle
of incidence on the secondary reflector is v/2, where

vy =1 — (8 + o), (22)

and that on the primary reflector is given by (cf. Ap-
pendix)

o= ¢+ (0/2) = (6/2)
v 2 arctani[(e, — 1)/(es + 1) tan (¢/2)r. (23)

Further, a more convenient relationship between the
angles ¢ and f results from combining Eqgs. (5) and

(6)?

tan (0/2) — [(1 — )/ (1 + o)

1
x cot (6/2) — % cot (9/2) as ¢ — 5 (24)

Equation (24) may be used to obtain a direct relation
between the radial coordinate p in the collimated
input to all systems described and the target focus in-
cidence angle 6, given by

p = p cot (8/2). (25)

With # as a parameter, the parameters ¢/2, v/2, and p
are plotted in Fig. 6, along with the angle u for e; =
1.0 and es, = 13/12. It is seen that these angles of 1n-

cidence are never large in practical devices.

Focusing Properties

For definiteness, assume that a Gaussian profile
beam is incident on a structure such as shown in Fig.
4 or 5, with divergence m times worse than the dif-
fraction-limited half-angle

dp = N/ muw. (26)

Conservation of etendue in formation of a focal re-
sion with 1/¢% radius r, implies that

Y. = WA/ 2T. (27)

A similarly derived estimate of the focal radius at-
tainable with a sharply apertured input beam of uni-
form intensity gives

v, = 0.40nm. (28)

Exact calculation of the focal intensity distribution
must include the effects of input beam apodization
and divergence due to sources other than diffraction,
as well as manufacturing tolerances, and 1s not at-
tempted here. In fact, geometrical optics will domi-
nate propagation to the critical density surtace of
laser fusion targets throughout the irradiation se-
quence, since such targets are typically ot the order
100 incident wavelengths in diameter.

Therefore, the preceding estimates indicate that a
well-made spherical illumination structure of the
type described is quite tolerant to input beam wave-
front distortion in the [aser fusion application.

Summary

Reflective optics employing various conic sections
have been shown to give nearly uniform illumination

20 —
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Fig. 6. Dependent of ¢, p, ¥, and u In # 1n a two-beam 1llumina-

tion system.
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of a sphere with one or two laser beams. T'wo-beam
optics yield mirror systems of practical size for early
pellet irradiation experiments.
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Appendix: Irradiation Systems with Hyperbolic
Primary Optics

In the section on two-beam irradiation systems, it

was implied that the intensity mapping properties of

such devices are independent of the primary optic
image distance. Finite image distance 1s obtained
with a hyperbolic primary reflector and 1s useful to
minimize shadowing of the target region due to the
irradiation system input aperture as well as to permit
collimation of light reradiated by the target plasma.
In this section, it will be shown that the analysis de-
veloped for a parabolic primary (infinite image dis-
tance) 1s unchanged by substitution of a system con-
sisting of a hyperbolic primary (finite image distance
f) combined with an external input optic with focal
length f.

Such a system 1s 1llustrated in Fig. 7. For clarity,
this approach will be illustrated in a one-beam geom-
etry as 1in Fig. 1. In the figure, an elliptical mirror of
eccentricity e; and semimajor axis a; has the target
pellet at the focus labeled ;. A convex hyperbolic
mirror with virtual image distance p and eccentricity
eo = 1 shares the major axis and conjugate focus F's
of the elliptic mirror. A cylindrically symmetric, col-
limated input beam has radial intensity distribution
[,(p’) and shares the elliptic mirror major axis.
Input radiation 1s focused on the real image point

(F9") of the primary optic by an external input optic

that 1s equivalent to a parabola with focal length f.
From the virtual focus at F'5 to the target, this sys-
tem 1s identical to that shown in Fig. 1.

In this case, the hyperbolic mirror surface is -given

by
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One-beam illumination system with hyperbolic primary and parabolic input reflector.

R(p) = [ple, + 1)/(1 + e, cosd)]. (A1)

The elliptical mirror surface is given by Eq. (3) of the
text, and the relationships given by KEqgs. (5) through
(8) still apply. New parameters are r4, the distance
from the equivalent input optic surface to £9"; rg,
the distance from F5’ to the point of reflection on the
hyperbola; and ¢, which is the cone half-angle of that
ray which enters the system at radius p’ in the colli-
mated input beam.

As stated in Eq. (18), es 1s not a free parameter,
but is chosen so as to place the real image point £'5" a
distance p 1nside the elliptical surface. An alternate
form of Eq. 18 that is more useful here 1s

7p =1l + 1)/(e, — 1)]. (A2)

By analogy with Eq. (2), the equivalent input mir-
ror surface 1s given by

ri() = f sec’ (¥/2). (A3)
The input ray radius p’ is related to r 4 and ¢ by

1)/ (e, — 1)] tan (1/2).(A4)

p' () = » sind = 2;’)[(@2

From the properties of a hyperbola, the parameters
rs and R are related by the expression

;) = R(¢p) + [2p/(e, — 1)]. (A5)

In this problem, the forward transfer function is
given by

Ap', 0) = 1,4, 0)/L(p") = (Rryvy/7vy75)°

— [g(p’, 0)]"!. (A6)
Since (r1/rs) 1s completely determined by the secon-
dary elliptical optic that is unchanged from that dis-
cussed in the text, equivalence will have been demon-
strated between the mapping functions for devices
with parabolic and hyperbolic primary systems if it
can be shown that

(Rvy/73) = R, = p sec” (d/2), (A7)



where R, is the parabolic primary surface given by
Eq. (2) of the text and R is the hyperbolic surface [cf.
Eq. (A1)|. This statement is clear upon comparing
the mapping function forms for the two cases |cf.
Eqs. (10) and (A6)]. The proof of Eq. (A7) proceeds
as follows. By inspection of Fig. 7 together with Egs.
(A1), (A2), and (A5),

cosd = i (F + p) ~ R COS@I/"’B}

_ {[ZP(’Z/(C’Z — 1)| - R COSQ‘)}
12p/(cy — 1)] + R

———
—_—

'_26’2 + ((}22 + 1) cos@]
L 2¢9 COS + (02 + 1) ]

Therefore,
tan®(¢/2) = [(1 — cos#)/(1 + cos¥)]

= [(¢; — D)/(e; + D1 = coso)/(1 + coso)
and

tan(¢/2) = [(e, — 1)/(ey + 1)] tan(¢/2). (A9)
Now,
p'/p = rysind/ry sing = r /v, (A10)

where, as betore,

0 — R sino. (A11)
By combining Eqgs. (A4) and (A9), we find that

p’ = 2p tan(a/2). (A12)
It follows from Eqgs. (A10), (A11), and (A12) that

(Rry/v3) = (Rp'/p) = p sec?(¢p/2) (A7)

as was to be proved.

Therefore, Egs. (11), (13), (13a), (16), and (25) of
the text remain valid for a system employing a hyper-
bolic primary with finite image distance f combined
with an external input optic with focal length f when
the radial coordinate is relabeled p’.

T'wo additional differential relationships analogous
to Eqgs. (8) and (9) appear in this system. Differen-
tiation of Eq. (A4) together with Eq. (A2) gives

dp' = plley + 1)/ (ey — 1| sect(¥/2)dd = r()dy. (A13)

Also, Eq. (A9) may be differentiated and combined
with Eqs. (A2) and (A13) to give

()Y = p seci(p/2)do.

This expression may be combined with Eqs. (A10)
through (A12) to give

ra(dy = (p/p"Wrdd = Rlrdi/p sec’(¢0/2)] = R(p)o.
(A14)
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